Multicomponent click synthesis of 1,2,3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon.

نویسندگان

  • Francisco Alonso
  • Yanina Moglie
  • Gabriel Radivoy
  • Miguel Yus
چکیده

Copper nanoparticles on activated carbon have been found to effectively catalyze the multicomponent synthesis of β-hydroxy-1,2,3-triazoles from a variety of epoxides and alkynes in water. The catalyst is easy to prepare, reusable at a low copper loading (0.5 mol %), and exhibits higher catalytic activity than some commercially available copper sources. The regio- and stereochemistry of the reaction has been revised and unequivocally established on the basis of X-ray crystallographic analyses. An NMR experiment has been implemented for the rapid and unmistakable determination of the regiochemistry of the process. Some mechanistic aspects of the reaction have been also undertaken which unveil the participation of copper(I) acetylides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Component and Click Strategy for Synthesis of β-Hydroxy 1,4-Disubstituted 1,2,3-Triazoles Derivatives Catalyzed by 1,4-Dihydroxyanthraquinone-copper(II) Complex onto Nano AlPO4

In this work, copper(II) heterogeneous nanocatalyst supported on modified AlPO4 (Cu(II)-DA@Nano AlPO4) was used for the synthesis of some biological active heterocyclic molecules, particularly for the efficient conversion of a wide range of non-activated terminal alkynes to β-hydroxy 1,4-disubstituted 1,2,3-triazolethrough a three-component “click” reaction at room temperature in water. The reg...

متن کامل

Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon.

An easy-to-prepare, reusable and versatile catalyst consisting of oxidised copper nanoparticles on activated carbon has been fully characterised and found to effectively promote the multicomponent synthesis of 1,2,3-triazoles from organic halides, diazonium salts, and aromatic amines in water at a low copper loading.

متن کامل

Alkenes as azido precursors for the one-pot synthesis of 1,2,3-triazoles catalyzed by copper nanoparticles on activated carbon.

A one-pot protocol for the synthesis of 1,2,3-triazoles has been developed starting from inactivated alkenes and based on two click reactions: the azidosulfenylation of the carbon-carbon double bond and the copper-catalyzed azide-alkyne cycloaddition (CuAAC). High yields of the β-methylsulfanyl triazoles have been attained using CuNPs/C as catalyst, with other commercial copper catalysts being ...

متن کامل

One-pot multicomponent click synthesis of some novel 1,4-disubstituted-1H-1,2,3-triazoles from alkenes

A facile and one-pot multicomponent synthesis of novel 1,4-disubstituted-1H-1,2,3-triazoles from alkenes at room temperature is reported. At the first step, in the presence of I2/NaN3 reagents, various alkenes were converted to the corresponding azido iodides and in the next step, the reaction of these compounds with phenylacetylene in the presence of catalytic amount of sodium ascorbate/ CuSO4...

متن کامل

Synthesis of 1,4-disubstituted 1,2,3-triazoles Catalyzed by Eggshell-supported-Cu(I) Metformin Complex as a Heterogeneous Catalyst in Water

An efficient and eco-friendly method has been developed for the synthesis of 1,4 disubstituted 1,2,3-triazoles using the eggshell-supported-Cu(I) metformin complex as a natural and heterogeneous catalyst. The catalyst prepared is characterized by FT-IR spectroscopy, SEM, and ICP techniques. Terminal alkynes were successfully reacted with alkyl chloride and sodium azide in the presence of CuI im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of organic chemistry

دوره 76 20  شماره 

صفحات  -

تاریخ انتشار 2011